Addition and Subtraction

Year 1

Compose and Partition Numbers to 10 (1)

Vocabulary:

Part Whole One Two Three Four Five Six Seven Eight Nine Ten Represents Compose Combine Partition Numberblocks Part-Part-Whole (Cherry) model Tens Frame Fingers Five and-a-bit Systematic Subitise One more One less

Understand that numbers to 10 can be represented in many different ways.

Numbers to 5 can be identified without counting (subitising).

$\int_{0}^{\infty} \operatorname{cic}_{a}^{6}$

Each number is composed of the previous number and one more.

Each number can be partitioned into two smaller numbers

There are 5 \qquad . 3 are \qquad 2 are \qquad -.

5 is the whole. 3 is a part. 2 is a part.

A number can be partitioned in different ways.

There are 5 \qquad 3 are \qquad . 2 are \qquad -.

5 is the whole. 3 is a part. 2 is a part.

Addition and Subtraction

Year 1

Compose and Partition Numbers to 10 (2)

A number can be partitioned in different ways systematically.

```
```

Vocabulary:

```
```

Vocabulary:
Part Whole One Two Three Four Five Six Seven Eight Nine Ten
Part Whole One Two Three Four Five Six Seven Eight Nine Ten
Represents Compose Combine Partition Numberblocks Part-Part-Whole
Represents Compose Combine Partition Numberblocks Part-Part-Whole
(Cherry) model Tens Frame Fingers Five and-a-bit Systematic Subitise
(Cherry) model Tens Frame Fingers Five and-a-bit Systematic Subitise
One more One less

```
```

One more One less

```
```


Numbers from 6-10 are composed of the ' 5 and a bit' structure.

Addition and Subtraction

Year 1

Read, Write and Interpret Additive Equations (1)

Vocabulary:

Part Whole One Two Three Four Five Six Seven Eight Nine Ten Represents Compose Combine Partition Total Part-Part-Whole (Cherry) model Tens Frame Fingers Five and-a-bit Systematic Plus + Minus - Equal to = Addition Subtraction Quantity Increase Decrease First, Then, Now Expression Equation
Addend + Addend = Sum Minuend - Subtrahend = Difference

We can write the addends in either order.
(Commutative Law)

$$
5+2=7
$$

Identify what each number represents in an expression.

We can write 5 plus 2 is equal to 7 .
The 5 represents \qquad .

The 2 represents \qquad _-
The 7 represents the total number of \qquad -

Addition and Subtraction

Year 1

Read, Write and Interpret Additive Equations

Vocabulary:

Part Whole One Two Three Four Five Six Seven Eight Nine Ten Represents Compose Combine Partition Total Part-Part-Whole (Cherry) model Tens Frame Fingers Five and-a-bit Systematic Plus + Minus - Equal to = Addition Subtraction Quantity Increase Decrease First, Then, Now Expression Equation

Addend + Addend $=$ Sum
Minuend - Subtrahend = Difference

Subtraction can tell us about partitioning.

There are 8 \qquad altogether.

5 _ are \qquad .

3 \qquad are \qquad .

Understand the First, Then, Now structure of addition and subtraction.

Addition can tell us about a quantity increasing.
Subtraction can tell us about a quantity decreasing.

Addition can tell us about combining objects.
Subtraction can tell us about partitioning objects.

$$
\begin{array}{ll}
2+3=5 & 5-3=2 \\
3+2=5 & 5-2=3
\end{array}
$$

Addition and Subtraction undo eachother.

Addition and Subtraction

Year 2

Add and Subtract across 10 (1)

Vocabulary:

Part Whole One Two Three Four Five Six Seven Eight Nine Ten

 Represents Compose Combine Partition Total Part-Part-Whole (Cherry) model Tens Frame Fingers Five and-a-bit Systematic Plus + Minus - Equal to = Addition Subtraction Quantity Increase Decrease First, Then, Now Expression Equation

$$
7+5
$$

$$
7+5=7+3+2=10+2
$$

Use knowledge of known facts to bridge 10 using a 'make 10' strategy.
First, I partition the \qquad into \qquad and \qquad -.

Then, I add \qquad and \qquad to make 10

$$
\text { Then, } I \text { add the remaining ___ to make }
$$

\qquad _.

Addition and Subtraction

Year 2

Add and Subtract across 10 (2)

$$
15-9=6
$$

10

Use knowledge of known facts to subtract through 10. We can partition the subtrahend to help us subtract.

First, I partition the \qquad into \qquad and \qquad .

Then, I subtract \qquad and \qquad to get to 10.

Then, I subtract the remaining __ to make \qquad _.

Addition and Subtraction

Year 2

Add and Subtract across 10 (3)

```
Vocabulary:
Part Whole One Two Three Four Five Six Seven Eight Nine Ten
Represents Compose Combine Partition Total Part-Part-Whole (Cherry) model
Tens Frame Fingers Five and-a-bit Systematic Plus + Minus - Equal to =
Addition Subtraction Quantity Increase Decrease First,Then, Now
Expression Equation
Addend + Addend = Sum

Use knowledge of known facts to subtract from 10. We can partition the subtrahend to help us subtract.

First, I partition the \(\qquad\) into \(\qquad\) and \(\qquad\) -.

Then, I subtract \(\qquad\) from 10 to make \(\qquad\) —.

Then, I add the remaining \(\qquad\) to make \(\qquad\) -.

\(15-9\)

\[
\begin{gathered}
10-9=1 \\
1+5=6 \\
15-9=6
\end{gathered}
\]

\section*{Addition and Subtraction}

\section*{Year 2}

\section*{Solve Comparative Addition and Difference Problems}
\begin{tabular}{l} 
Vocabulary: \\
Part Whole One Two Three Four Five Six Seven Eight Nine Ten \\
Represents Compose Combine Partition Total Part-Part-Whole (Cherry) model \\
Tens Frame Fingers Five and-a-bit Systematic Plus + Minus - Equal to = \\
Addition Subtraction Quantity Increase Decrease First, Then, Now \\
\begin{tabular}{l} 
Expression Equation Difference Barmodel \\
Addend + Addend = Sum \\
Minuend - Subtrahend = Difference
\end{tabular} \\
\hline
\end{tabular}


Represent a range of comparison contexts.

Ben is 7 years older than Charlotte.

Charlotte is 7 years younger than Ben.


We can use subtraction to help solve difference problems / missing addend problems about 'how many more?' and 'how many fewer?'
\[
\begin{aligned}
& 3+\ldots=8 \\
& 8-3=5
\end{aligned}
\]

Create contexts for recognising the difference/comparative addition structure with all representations below.


\section*{Addition and Subtraction}

\section*{Year 2}

\section*{Add and Subtract within 100 (1).}

\section*{Vocabulary:}

Part Whole Ones Tens Represents Compose Combine Partition Total Part-Part-Whole (Cherry) model Tens Frame Deines Plus + Minus - Equal to \(=\) Addition Subtraction Expression Equation Exchange Count on Count back Number line Tens Boundary

Addend + Addend = Sum
Minuend - Subtrahend = Difference

\(3+6=9\)

\(23+6=29\)

Use known facts within 10 to add/subtract multiples of 10 .

I know that 4 plus 3 is equal to 7 .
So, 4 tens plus 3 tens is equal to 7

> tens.
\[
\begin{aligned}
& 40+30=70 . \\
& 70-40=30
\end{aligned}
\]

\section*{Use known facts within 10 to} add/subtract ones to/from a 2 digit number.

I know that 3 plus 6 is equal to 9 .
So, 2 tens and 3 ones plus 6 ones is equal to 2 tens and 9 ones.
\[
23+6=29 .
\]


Generalise that adding/subtracting within 10 can be applied to adding a \(\mathbf{2}\) digit number with a 1 digit number - not crossing the tens boundary.

I know that 4 plus 3 is equal to 7.
So, 1 ten and 4 ones plus 3 ones is equal to 1 tens and 7 ones.

\section*{Addition and Subtraction}

\section*{Year 2}

\section*{Add and Subtract within 100 (2).}

Use knowledge of subtracting from 10 to subtract a single-digit number from a multiple of 10.

I know that 10 minus 3 is equal to 7 .
So, 3 tens minus 3 ones is equal to 2 tens and 7 ones.
\[
30-3=27
\]


\section*{Vocabulary:}

Part Whole Ones Tens Represents Compose Combine Partition Total Part-Part-Whole (Cherry) model Tens Frame Deines Plus + Minus - Equal to = Addition Subtraction Expression Equation Exchange Count on Count back Number line Tens Boundary

Addend + Addend = Sum
Minuend - Subtrahend = Difference

Use known facts within 10 to add/subtract multiples of 10 to a 2 digit number.

I know that 6 plus 2 is equal to 8 .
So, 6 tens plus 2 tens is equal to 8
tens. Then add the additional 5
ones.
\[
60+25=85
\]

\[
10-3
\]



\section*{Addition and Subtraction}

\section*{Year 2}

Add and Subtract within 100 (3).
\(40+20=60\)
\(5+3=8\)
\(60+8=68\)


50
\(+\)
13
=
63


\section*{Vocabulary:}

Part Whole Ones Tens Represents Compose Combine Partition Total Part-Part-Whole (Cherry) model Tens Frame Deines Plus + Minus - Equal to = Addition Subtraction Expression Equation Exchange Count on Count back Number line Tens Boundary

Addend + Addend = Sum
Minuend - Subtrahend = Difference

\[
45-20-3
\]



Subtract from any two-digit number by subtracting tens then ones without crossing a tens boundary.

Partition both addends to add efficiently when the ones require an exchange.


Subtract from any two-digit number by portioning the subtrahend into tens and ones and counting back.

\section*{Addition and Subtraction}

\section*{Year 3}

\section*{Calculate complements to 100.}
```

Vocabulary:
Part Whole Ones Tens Represents Compose Combine Partition Total
Part-Part-Whole (Cherry) model Deines 100 square Plus + Minus - Equal to =
Addition Subtraction Expression Equation Exchange Complements
Addend + Addend = Sum

```


\(62+\square=100\)

60

Solve missing number problems that sum to 100.



10


10

Compare equations which do and do not sum to 100.

\section*{Addition and Subtraction}

\section*{Year 3}

\section*{Columnar Addition and Subtraction}

\section*{Vocabulary:}

Ones Tens Represents Compose Combine Total Deines Plus + Minus Equal to \(=\) Addition Subtraction Equation Regroup Algorithm

Addend + Addend \(=\) Sum
Minuend - Subtrahend = Difference


Use deines to represent columnar addition without exchange pictorially before moving to abstract algorithm.

We add the ones. 3 ones plus 5 ones are equal to 8 ones.

We add the tens. 4 tens plus 2 tens is equal to 6 tens.

Use deines to represent columnar addition with exchange pictorially before moving to abstract algorithm.

5 ones plus 7 ones is equal to 12 ones. I can regroup 12 ones. 12 ones is equal to 1 ten and 2 ones.

2 tens plus 4 tens is equal to 6 tens. We also need to add 1 ten from the regrouping. There are 7 tens altogether.

If a column group is equal to 10 or more we must regroup. 10 ones is equal to 1 ten. 10 tens is equal to 1 hundred.


\section*{Addition and Subtraction}

\section*{Year 3}

Columnar Addition and Subtraction
```

Vocabulary:
Ones Tens Represents Compose Combine Total Deines Plus + Minus -
Equal to = Addition Subtraction Equation Expression Regroup Algorithm
Addend + Addend = Sum
Minuend - Subtrahend = Difference

```
\begin{tabular}{ll}
\(475+25\) & \(237+156\) \\
\(349+84\) & \(120+130\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Use column addition & Use mental strategies & Compare expressions which can be calculated using mental or written strategies. & \[
10)^{2}(2
\] & Add 3 addends using columnar addition, using a make 10 strategy to support. \\
\hline
\end{tabular}

\section*{Addition and Subtraction}

\section*{Year 3}

\section*{Columnar Addition and Subtraction}

\section*{Vocabulary:}

Ones Tens Represents Compose Combine Total Deines Plus + Minus Equal to \(=\) Addition Subtraction Equation Expression Regroup Algorithm Addend + Addend \(=\) Sum

Minuend - Subtrahend = Difference


Use deines to represent columnar subtraction without exchange pictorially before moving to abstract algorithm.

We subtract the ones. 5 ones minus 3 ones is equal to 2 ones.

We subtract the tens. 6 tens minus 2 tens is equal to 4 tens.


Compare expressions which can be calculated using mental or written strategies.

\section*{Addition and Subtraction}

\section*{Year 3}

\section*{Manipulate the Additive Relationship}

\section*{Vocabulary:}

Represents Compose Combine Total Deines Plus + Minus - Equal to = Addition Subtraction Equation Expression Bar Model Part-Part-Whole Model (Cherry) Whole Part

Addend + Addend \(=\) Sum
Minuend - Subtrahend = Difference

\[
25+12=37
\]
\[
37-12=25
\]
\[
12+25=37
\]
\[
37-25=12
\]
\[
37=25+12
\]
\[
25=37-12
\]
\[
37=12+25
\]
\[
12=37-25
\]

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{743} \\
\hline 329 & 414 \\
\hline
\end{tabular}


Recognise the different equations that can be recorded based on the part-whole structure.

Addend + addend = sum
Minuend - subtrahend = difference
\(447-285=162\)

\section*{Use the part-whole structure to support finding a missing part.}

There is a missing part. To find the missing part, we subtract the other part from the whole.


Use the part-whole structure to support finding a missing whole.

There is a missing whole. To find the missing whole, we add the two parts.

\section*{Addition and Subtraction}

\section*{Year 6}

\section*{Quantify additive and multiplicative relationships}
```

Vocabulary:
Additive Multiplicative Relationship Represents Compose Combine Total
More than Less than Plus + Minus - Equal to = Addition Subtraction Divide %
Multiply x One-___ of Equation Expression Bar Model Whole Part
Difference Multiplier Unknown Sequence
Addend + Addend = Sum

```

\[
250+750=1,000 \quad 1,000-750=250
\]

\[
250 \times 4=1,000 \quad 1000 \div 4=250
\]

The relationship between two numbers can be expressed both additively and multiplicatively.


Finding the difference can help calculate the unknown terms in a sequence.

Finding the known multiplier can help calculate the unknown terms in a sequence.


\section*{Addition and Subtraction}

\section*{Year 6}

\section*{Quantify additive and multiplicative relationships}
```

Vocabulary:
Additive Multiplicative Relationship Represents Compose Combine Total
More than Less than Plus + Minus - Equal to = Addition Subtraction Divide :
Multiply x One-

```
\(\qquad\)
``` of Equation Expression Bar Model Whole
Difference Multiplier Unknown Sequence
Addend + Addend = Sum
```

$\frac{1}{3}$ of $?=10$

10

$\frac{1}{3}$ of $?=10$

30		
10	10	10

$$
\frac{1}{3} \text { of } 30=10
$$

## Addition and Subtraction

## Year 6

## Derive Related Calculations

```
Vocabulary:
Additive Multiplicative Relationship Represents Equation Unknown Re-
arrange Inverse Place Value Properties Commutative Associative
Distributive Compensation
Addend + Addend = Sum Factor x Factor = Product (Multiplicand x Multiplier = Product)
Minuend - Subtrahend = Difference Dividend % Divisor = Quotient
```

$252=3 \times 84$	$252=3 \times 84$	$252=3 \times 84$
$2,520=30 \times \square$	$\square=3 \times 85$	$252=3 \times 60+3 \times \square$


$625-148=477$	$625-148=477$	$625-148=477$
$6,250-1,480=\square$	$625-70-\square=477$	$625-248=\square$


$14.8+7.6=22.4$	$14.8+7.6=22.4$	$14.8+7.6=22.4$
$1,480+\square=2,240$	$\square-7.6=14.8$	$12.8+\square=22.4$


$4,800 \div 25=192$	$4,800 \div 25=192$	$4,800 \div 25=192$
$25 \times 192=\square$	$4,800 \div 250=\square$	

## Addition and Subtraction

## Year 6

## Solve Problems involving Ratio Relationship

## Vocabulary:

Additive Multiplicative Relationship Represents Equation Unknown Scalefactor Ratio Ratio Table ___ times the size one-___ the size of Vertical Horizontal

Factor x Factor $=$ Product (Multiplicand x Multiplier $=$ Product $)$
Dividend $\div$ Divisor $=$ Quotient

number of vases	3				
number of flowers:	3	3	3	3	3
	15				
$3 \times 5=15$					
$15 \div 5=3$					
$15 \times \frac{1}{5}=3$					

## Ratio table to compare sets of information.

For every $\qquad$ there are $\qquad$ .

For every 1 litre of petrol, you can drive $\mathbf{7}$ miles.
For every 7 miles you will drive, you need 1 litre of petrol.

Extend sequences using knowledge of patterns based on ratio table.



## Explore vertical and horizontal relationship between numbers.

$\qquad$ .


## Addition and Subtraction

## Year 6

Solve Problems with Two Unknowns

```
Vocabulary:
Additive Multiplicative Relationship Represents Equation Two Unknowns
Scale-factor Ratio ___ times the size one-__ the size of Total Bar Model
Structure
```


$B=r+b$

## B

$p$

```
y
```

$B=p+y$

Use Cuisenaire to find 2 bars of total length that are equal to another.

There is more than one solution to the problem.

There can be infinite solutions to a problem.


Solve multiplicative problems with two unknowns when the total is known.

v
$b \square$
20

one part $=20 \div 5=4$

one part $=20 \div 5=4$

$$
b=4
$$

$$
a=4 \times 4=16
$$

The two numbers are 9 and 16.

